Jaden Park

- jadenpark[at]cs[dot]wisc[dot]edu

prof_pic.jpg

I am a second year M.S./Ph.D. student in Computer Science at UW-Madison, where I am fortunate to be advised by prof. Yong Jae Lee. Prior to joining UW-Madison, I spent a great time at Krafton AI as a research intern, working closely with prof. Kangwook Lee, prof. Dimitris Papailiopoulos and prof. Ernest K. Ryu. I hold a bachelor’s degree from SNU with summa cum laude in Mathematics and Computer Science along with a minor in Philosophy of Science (link), and was fortunate to be advised by prof. Wonjong Rhee.

My research interest lies in improving, understanding, and analyzing foundation models, both empirically and theoretically. I ultimately envision developing deployable machine learning agents that can solve challenging real-world problems. Currently, I am interested in multimodality, robustness and mathematical and compositional reasoning.

📣 I am actively looking for internship positions for 2026 Summer on multimodal models.
📩 Feel free to send me an email if there’s a match :)

📝 You can find my curriculum vitae here.


News


May, 2025 🚀 Starting my internship at Adobe!
Sep, 2024 📚 Starting my Ph.D. at UW-Madison!
May, 2024 📄 Our work on ICL of Mamba+Transformer (MambaFormer) has been accepted at ICML 2024.
Jan, 2024 📄 Our work on Image Clustering (IC|TC) has been accepted at ICLR 2024.
Jun, 2023 🚀 Starting my internship at Krafton AI.

Experience

  1. Adobe Research
    Adobe Research | May 2025 – Jan 2026
    San Jose, CA, USA
    Topic: Material-aware multi-modal segmentation
  2. Krafton AI
    Krafton AI | June 2023 – Feb 2024
    Seoul, South Korea
    Topic: Image clustering, in-context learning and text-based benchmark generation for agents

Selected publications

  1. Contamination Detection for VLMs using Multi-Modal Semantic Perturbation
    J. Park, M. Cai, F. Yao, J. Shang, S. Lee and YJ Lee
    arXiv Preprint, 2025
  2. Decomposing Complex Visual Comprehension into Atomic Visual Skills for Vision Language Models
    H. Chae, S. Yoon, J. Park, C. Y. Chun, Y. Cho, M. Cai, YJ Lee and E. K. Ryu
    arXiv Preprint, 2025
  3. TemporalBench: Towards Fine-grained Temporal Undestanding for Multimodal Video Models
    M. Cai, R. Tan, J. Zhang, B. Zou, K. Zhang, F. Yao, F. Zhu, J. Gu, Y. Zhong, Y. Shang, Y. Dou, J. Park, J. Gao, YJ Lee and J. Yang
    NeurIPS 2024 Workshop on Video-Language Models (oral), 2024
  4. Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks
    J. Park, J. Park, Z. Xiong, N. Lee, J. Cho, S. Oymak, K. Lee and D. Papailiopoulos
    International Conference on Machine Learning, 2024
  5. Image Clustering Conditioned on Text Criteria
    S. Kwon, J. Park, M. Kim, J. Cho, E. Ryu and K. Lee
    International Conference on Learning Representations, 2024
  6. Conditionally Optimal Parallelization of Real-Time DAG Tasks for Global EDF
    Y. Cho, D. Shin, J. Park and C. Lee
    In IEEE Real-Time Systems Symposium (RTSS) , 2021